Artificial absorption creation for more accurate tunable diode laser absorption spectroscopy measurement open site


Date: Sep, 2017
Artificial absorption creation for more accurate tunable diode laser absorption spectroscopy measurement

A novel strategy for more accurate tunable diode laser absorption spectroscopy (TDLAS) measurement is presented. This method is immune to non-absorption transmission losses, and allows dead zone removal for ultra-low concentration detection, and reference point selection at atmospheric pressure. The method adjusts laser emission and creates artificial absorption peaks according to requirements. By creating an artificial absorption peak next to the real absorption zone, calibration is not necessary. The developed method can be applied to not only wavelength modulation spectroscopy (WMS) but also direct absorption (DA). In WMS, the method does not need two harmonic signals, resulting in higher reliability, better performance, and no electro-optical gain uncertainty. At the same time, non-absorption transmission losses effect is suppressed from 70% to 0.425% with DA and from 70% to 0.225% with WMS method. When the artificial absorption peak coincides with the real one, the dead zone of measurement can be removed to give a lower detection limit, and water vapor still can be detected when concentration is lower than 0.2 ppm in our experiment. Reference point selection uncertainty with the DA method, especially when the signal-to-noise ratio is low and absorption line is broad, can also be facilitated. And the uncertainty of reference point selection is improved from 6% to 0.8% by measuring reference point amplitude. The method is demonstrated and validated by WMS and DA measurements of water vapor (1 atm, 296 K, 1368.597 nm). The measurement results obtained using the new method reveal its promise in TDLAS.

Application: Others,Sensor